

SET-1

Series PP4QQ/4

प्रश्न-पत्र कोड Q.P. Code 56/4/1

रोल नं.				
Roll No.				

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

नोट

- (I) कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित ਧ੍ਰਾਣ 23 हैं।
- (II) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 33 प्रश्न
- (III) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-* * पृष्ठ पर लिखें ।
- (IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से × पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक * अवश्य लिखें ।
- (V) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का * समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।

NOTE

- (I)Please check that this question paper contains 23 printed pages.
- (II) Please check that this question paper contains 33 questions.
- (III) Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- (IV) Please write down the serial number of the question in the answer-book before attempting
- (V) 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the candidates will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धांतिक) CHEMISTRY (Theory)

निर्धारित समय: 3 घण्टे

अधिकतम अंक : 70

Time allowed: 3 hours

Maximum Marks: 70

56/4/1/21

1

P.T.O.

सामान्य निर्देश:

निम्नलिखित निर्देशों को ध्यानपूर्वक पढ़िए और उनका पालन कीजिए:

- (i) इस प्रश्नपत्र में 33 प्रश्न हैं। **सभी** प्रश्न अनिवार्य हैं।
- (ii) प्रश्नपत्र **पाँच** खण्डों में विभाजित है खण्ड **क, ख, ग, घ** तथा **ङ**।
- (iii) **खण्ड क –** प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 1 अंक का है।
- (iv) **खण्ड ख –** प्रश्न संख्या 17 से 21 तक अति लघु उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 2 अंकों का है।
- (ए) खण्ड ग प्रश्न संख्या 22 से 28 तक लघु उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 3 अंकों का है।
- (vii) **खण्ड ङ –** प्रश्न संख्या 31 से 33 दीर्घ उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 5 अंकों का है।
- (viii) प्रश्नपत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड **क** के अतिरिक्त अन्य खण्डों के कुछ प्रश्नों में आंतरिक विकल्प का चयन दिया गया है।
- (ix) ध्यान दें कि दृष्टिबाधित परीक्षार्थियों के लिए अलग प्रश्नपत्र है।
- (x) कैलकुलेटर का उपयोग वर्जित है।

खण्ड - क

 $16 \times 1 = 16$

प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के 1 अंक के प्रश्न हैं।

- 1. ${\rm Ca^{2+}}$ और ${\rm Cl^{-}}$ आयनों की मोलर आयनिक चालकताएँ क्रमशः 119.0 और $76.3~{\rm S}~{\rm cm^{2}}~{\rm mol^{-1}}$ हैं । ${\rm CaCl_{2}}$ के लिए सीमांत मोलर चालकता का मान होगा :
 - (A) $195.3 \text{ S cm}^2 \text{ mol}^{-1}$

(B) $43.3 \text{ S cm}^2 \text{ mol}^{-1}$

(C) $314.3 \text{ S cm}^2 \text{ mol}^{-1}$

(D) $271.6 \text{ S cm}^2 \text{ mol}^{-1}$

56/4/1/21

General Instructions:

Read the following instructions carefully and follow them:

- (i) This question paper contains 33 questions. All questions are compulsory.
- (ii) Question paper is divided into **FIVE** sections Section **A**, **B**, **C**, **D** and **E**.
- (iii) **Section A** question number 1 to 16 are multiple choice type questions. Each question carries 1 mark.
- (iv) **Section B** question number **17** to **21** are very short answer type questions. Each question carries **2** marks.
- (v) Section C question number 22 to 28 are short answer type questions. Each question carries 3 marks.
- (vi) **Section D** question number **29** and **30** are case-based questions. Each question carries **4** marks.
- (vii) **Section E** question number **31** to **33** are long answer type questions. Each question carries **5** marks.
- (viii) There is no overall choice given in the question paper. However, an internal choice has been provided in few questions in all the Sections except Section –A.
- (ix) Kindly note that there is a separate question paper for Visually Impaired candidates.
- (x) Use of calculator is NOT allowed.

SECTION - A

 $16 \times 1 = 16$

Question No. 1 to 16 are Multiple Choice type questions carrying 1 mark each.

- 1. The molar ionic conductivities of Ca^{2+} and Cl^- are 119.0 and 76.3 S cm² mol⁻¹ respectively. The value of limiting molar conductivity of $CaCl_2$ will be:
 - (A) $195.3 \text{ S cm}^2 \text{ mol}^{-1}$

(B) $43.3 \text{ S cm}^2 \text{ mol}^{-1}$

(C) $314.3 \text{ S cm}^2 \text{ mol}^{-1}$

(D) $271.6 \text{ S cm}^2 \text{ mol}^{-1}$

56/4/1/21 3 P.T.O.

2. निम्नलिखित अभिक्रिया पर विचार कीजिए :

$$H \subset O + H \subset O + H \subset O + H \subset O + H \subset A + B$$

दिए गए विकल्पों में से A और B की पहचान कीजिए :

- (A) A मेथेनॉल, <math>B Y पोटैशियम फॉर्मेट
- (B) A एथेनॉल, B पोटैशियम फॉर्मेट
- (C) $A \dot{\mu}$ थेनेल, $B \dot{\nu}$ थेनॉल
- (D) $A \dot{\mu}$ थेनॉल, $B \dot{\mu}$ टेशियम ऐसीटेट
- 3. निम्नलिखित अम्लों में से कौन विटामिन C को निरूपित करता है ?
 - (A) सैकैरिक अम्ल

(B) ग्लूकोनिक अम्ल

(C) ऐस्कार्बिक अम्ल

- (D) बेन्जोइक अम्ल
- 4. ऐल्डिहाइडों के विरचन के लिए रोज़ेनमुण्ड अपचयन प्रयुक्त होता है। इस अभिक्रिया में प्रयुक्त उत्प्रेरक है
 - (A) $Pd BaSO_4$

(B) निर्जल $AlCl_3$

(C) आयरन (III) ऑक्साइड

- (D) $HgSO_4$
- 5. दिए गए विकल्पों में से कौन सा ऐल्किल हैलाइड ${
 m S}_{
 m N} 1$ अभिक्रिया अधिक तीव्रता से करेगा ?
 - (A) $(CH_3)_3C-Br$

(B) $(CH_3)_2CH-Br$

(C) CH_3 – CH_2 –Br

- (D) $(CH_3)_3C-CH_2-Br$
- 6. नीचे दिए हुए 3d श्रेणी के तत्वों में से कौन सर्वाधिक संख्या में ऑक्सीकरण अवस्थाएँ दर्शाता है ?
 - (A) स्कैण्डियम

(B) मैंगनीज

(C) क्रोमियम

(D) टिटेनियम

56/4/1/21

2. Consider the following reaction:

$$H \setminus C = O + H \setminus C = O + Conc \cdot KOH \xrightarrow{\Delta} A + B$$

Identify A and B from the given options:

- (A) A Methanol, B Potassium formate
- (B) A Ethanol, B Potassium formate
- (C) A Methanal, B Ethanol
- (D) A Methanol, B Potassium acetate
- 3. Which of the following acids represents Vitamin C?
 - (A) Saccharic acid

(B) Gluconic acid

(C) Ascorbic acid

- (D) Benzoic acid
- 4. Rosenmund reduction is used for the preparation of Aldehydes. The catalyst used in this reaction is
 - (A) $Pd BaSO_4$

(B) Anhydrous AlCl₃

(C) Iron (III) oxide

- (D) $HgSO_4$
- 5. Which alkyl halide from the given options will undergo $S_N 1$ reaction faster?
 - (A) $(CH_3)_3C-Br$

 ${\rm (B)} \quad {\rm (CH_3)_2CH\text{--}Br}$

(C) CH_3 - CH_2 -Br

- (D) $(CH_3)_3C-CH_2-Br$
- 6. From the elements of 3d series given below, which element shows the maximum number of oxidation states?
 - (A) Scandium

(B) Manganese

(C) Chromium

(D) Titanium

56/4/1/21

P.T.O.

(A)
$$k = -Ae^{Ea/RT}$$

(B)
$$k = e^{Ea/RT}$$

(C)
$$k = Ae^{-Ea/RT}$$

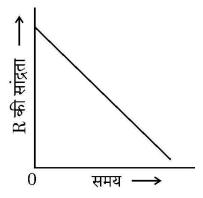
(D)
$$k = -Ae^{-Ea/RT}$$

8. निम्नलिखित में से तृतीयक ऐमीन की पहचान कीजिए:

$$\begin{array}{ccc} \operatorname{CH}_3 \\ (A) & \operatorname{CH}_3 - \operatorname{N} & -\operatorname{CH}_3 \end{array}$$

$$\begin{array}{ccc} \text{(B)} & \text{CH}_3 - \text{CH} - \text{CH}_3 \\ & \text{NH}_2 \end{array}$$

$$(C) \quad \mathrm{CH}_3 - \mathrm{NH} - \mathrm{CH}_2 - \mathrm{CH}_3$$


(D)
$$(C_2H_5)_2CHNH_2$$

- 9. कीटोनों में ग्रीन्यार अभिकर्मक की योगज अभिक्रिया के पश्चात तनु अम्लों द्वारा जलअपघटन से निर्मित होता है
 - (A) ऐल्कीन

(B) प्राथमिक एल्कोहॉल

(C) तृतीयक एल्कोहॉल

- (D) द्वितीयक एल्कोहॉल
- 10. शून्य कोटि की अभिक्रिया के लिए दिए हुए ग्राफ में ढाल और अंतःखंड हैं :

- (A) ਫਾल = k, अंतःखंड = $[R]_0$
- (B) ਫਾल = -k, अंतःखंड = $[R]_0$
- (C) ਫਾਲ = k/2.303, अंतःखंड = $ln[R]_0$

7. The correct Mathematical expression of Arrhenius equation is

(A)
$$k = -Ae^{Ea/RT}$$

(B)
$$k = e^{Ea/RT}$$

(C)
$$k = Ae^{-Ea/RT}$$

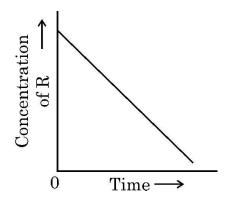
(D)
$$k = -Ae^{-Ea/RT}$$

8. Identify the tertiary amine from the following:

$$\begin{array}{ccc} \operatorname{CH}_3 \\ \operatorname{(A)} & \operatorname{CH}_3 - \operatorname{N} & -\operatorname{CH}_3 \end{array}$$

$$\begin{array}{ccc} \text{(B)} & \text{CH}_3 - \text{CH} - \text{CH}_3 \\ & \text{NH}_2 \end{array}$$

$$(C) \quad \mathrm{CH}_3 - \mathrm{NH} - \mathrm{CH}_2 - \mathrm{CH}_3$$


(D)
$$(C_2H_5)_2CHNH_2$$

- 9. Nucleophilic addition of Grignard reagent to ketones followed by hydrolysis with dilute acids forms:
 - (A) Alkene

(B) Primary alcohol

(C) Tertiary alcohol

- (D) Secondary alcohol
- 10. In a given graph of zero order reaction, the slope and intercept are :

- (A) Slope = k, Intercept = $[R]_0$
- (B) Slope = -k, Intercept = $[R]_0$
- (C) Slope = k/2.303, Intercept = $ln[R]_0$
- (D) Slope = -k/2.303, Intercept = $\ln A$

56/4/1/21

7

P.T.O.

- दी हुईं अभिक्रियाओं के लिए अभिकर्मकों के साथ सुमेलित कीजिए :
 - प्राथमिक एल्कोहॉलों का एल्डिहाइडों में ऑक्सीकरण I.
- $NaBH_{4}$ (p)

ब्यूटेन-2-ओन से ब्यूटेन-2-ऑल II.

- 440 K पर 85% फ़ॉस्फोरिक अम्ल (p)
- फ़ीनॉल का 2, 4, 6-ट्राइब्रोमोफ़ीनॉल में ब्रोमीनन III.
- PCC (r)
- प्रोपेन-2-ऑल का प्रोपीन में निर्जलीकरण IV.
- ब्रोमीन जल (s)

(A)
$$I - (r)$$
, $II - (p)$, $III - (s)$, $IV - (q)$

(B) I - (q), II - (r), III - (p), IV - (s)

(C)
$$I - (s)$$
, $II - (q)$, $III - (p)$, $IV - (r)$

- I (s), II (q), III (p), IV (r) (D) I (p), II (s), III (r), IV (q)
- 12. d-ब्लॉक तत्वों का सामान्य इलेक्ट्रॉनिक विन्यास है :

(A)
$$(n-1) d^{1-10} ns^{1-2}$$

(B)
$$(n-1) d^{10}ns^{1-2}$$

(C)
$$(n-1) d^{10}ns^{2-3}$$

(D)
$$(n-1) d^0 n s^{1-2}$$

प्रश्न संख्या 13 से 16 के लिए, दो कथन दिए गए हैं - जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है। इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (A), (B), (C) और (D) में से चुनकर दीजिए।

- (A) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या नहीं करता है।
- (C) अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है।
- (D) अभिकथन (A) ग़लत है, परन्तु कारण (R) सही है।
- अभिकथन (A): फ़ीनॉल की तुलना में p-नाइट्रोफ़ीनॉल कम अम्लीय है। 13.
 - कारण (R): नाइट्रो समूह इलेक्ट्रॉन अपनयक समूह है जो p-नाइट्रो फ़ीनॉक्साइड आयन को स्थायित्व प्रदान करने में सहायक है।

56/4/1/21

8

CLICK HERE

- 11. Match the reagents required for the given reactions:
 - I. Oxidation of primary alcohols to (p) NaBH₄ aldehydes
 - II. Butan-2-one to Butan-2-ol
- (q) 85% phosphoric acid at 440 K
- III. Bromination of Phenol to 2, 4, 6- (r) PCC Tribromophenol
- IV. Dehydration of propan-2-ol to (s) Bromine water propene
- $(A) \quad I-(r), \ II-(p), \ III-(s), \ IV-(q) \quad (B) \quad I-(q), \ II-(r), \ III-(p), \ IV-(s)$
- (C) I (s), II (q), III (p), IV (r) (D) I (p), II (s), III (r), IV (q)
- 12. The general electronic configuration of d-block elements is:
 - (A) $(n-1) d^{1-10} ns^{1-2}$

(B) $(n-1) d^{10}ns^{1-2}$

(C) $(n-1) d^{10}ns^{2-3}$

(D) $(n-1) d^0 n s^{1-2}$

For questions number 13 to 16, two statements are given – one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below:

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false, but Reason (R) is true.
- 13. **Assertion (A):** p-nitrophenol is less acidic than phenol.
 - **Reason (R)**: Nitro group is electron withdrawing and helps in the stabilisation of p-nitrophenoxide ion.

56/4/1/21

9

P.T.O.

14. अभिकथन (A) : बेन्जोइक अम्ल फ्रीडेल – क्राफ्ट्स अभिक्रिया प्रदर्शित नहीं करता है ।

कारण (R) : कार्बोक्सिल समूह निष्क्रियक समूह है एवं उत्प्रेरक एल्युमिनियम क्लोराइड कार्बोक्सिल समूह से आबन्धित हो जाता है ।

15. अभिकथन (A): फ्रक्टोज एक अपचायी शर्करा है।

कारण (R): फ्रक्टोज, फेलिंग विलयन और टॉलेन अभिकर्मक को अपचित नहीं करता है।

16. **अभिकथन (A) :** डेन्यल सेल के लिए, $Zn/Zn^{2+}(1M) \parallel Cu^{2+}$ (1M)/Cu जिसका E° सेल = 1.1~V है, यिद विपरीत बाह्य विभव 1.1~V से अधिक है, तो इलेक्ट्रॉन Cu से Zn की ओर प्रवाह करने लगते हैं।

कारण (R): सेल एक गैल्वैनी सेल की भाँति कार्य करता है।

खण्ड – ख

- 17. निम्नलिखित पदों को परिभाषित कीजिए:
 - (a) अभिक्रिया की कोटि
 - (b) सक्रियण ऊर्जा

 1×2

 $18.\ 200\ \mathrm{g}$ जल में किसी अवाष्पशील विलेय के $18\ \mathrm{g}$ घोलकर बना विलयन $272.07\ \mathrm{K}$ पर हिमीभूत होता है । विलेय का आण्विक द्रव्यमान परिकलित कीजिए ।

(जल के लिए
$$K_f = 1.86 \text{ K kg mol}^{-1}$$
)

 $\mathbf{2}$

- 19. (a) दिए गए युगल में से कौन सा यौगिक $m S_N 2$ अभिक्रिया तीव्रता से देगा और क्यों ? $m CH_3 CH_2 I \ \ref{CH}_3 CH_2 Br$
 - (b) निम्निलिखित यौगिकों को उनके क्वथनांकों के बढ़ते क्रम में व्यवस्थित कीजिए : ब्यूटेन, 1-ब्रोमोब्यूटेन, 1-आयडोब्यूटेन, 1-क्लोरोब्यूटेन

 1×2

56/4/1/21

14. **Assertion (A):** Benzoic acid does not undergo Friedel – Crafts reaction.

Reason (R): Carboxyl group is deactivating and the catalyst aluminium chloride gets bonded to the carboxyl group.

15. **Assertion (A):** Fructose is a reducing sugar.

Reason (R): Fructose does not reduce Fehling solution and Tollen's reagent.

16. **Assertion (A)**: For a Daniell cell, $Zn/Zn^{2+}(1M) \mid \mid Cu^{2+}(1M)/Cu$ with E^{o} cell = 1.1 V, if the external opposing potential is more than 1.1 V, the electrons flow from Cu to Zn.

Reason (R): Cell acts like a galvanic cell.

SECTION - B

- 17. Define the following terms:
 - (a) Order of a reaction
 - (b) Activation energy

 1×2

18. 18 g of a non-volatile solute is dissolved in 200 g of H_2O freezes at 272.07 K.

Calculate the molecular mass of solute (K_f for water = 1.86 K kg mol⁻¹)

19. (a) Which compound in the given pair would undergo S_N^2 reaction at a faster rate and why ?

$$\mathrm{CH}_3 - \mathrm{CH}_2 - \mathrm{I}$$
 and $\mathrm{CH}_3 - \mathrm{CH}_2 - \mathrm{Br}$

(b) Arrange the following compounds in the increasing order of their boiling points:

Butane, 1-Bromobutane, 1-Iodobutane, 1-Chlorobutane

 1×2

2

अथवा

- (b) आप निम्नलिखित रूपान्तरण कैसे सम्पन्न करेंगे ?
 - (i) टॉलूईन से बेन्जोइक अम्ल
 - (ii) एथेनॉल से 3-हाइड्रॉक्सीब्यूटेनेल

 1×2

- 21. (a) क्या होता है जब ग्लूकोस, ब्रोमीन जल के साथ अभिक्रिया करता है। रासायनिक समीकरण लिखिए।
 - (b) नीचे दो क्षारकों का उल्लेख किया गया है, पहचान कीजिए कि इनमें से कौन DNA में उपस्थित है और कौन RNA में उपस्थित है :
 - (i) थायमीन, (ii) यूरेसिल

 1×2

खण्ड - ग

- 22. (a) संकुल $[{
 m Pt(en)}_2{
 m Cl}_2]^{2+}$ के ज्यामितीय समावयव बनाइए ।
 - (b) क्रिस्टल क्षेत्र सिद्धांत के आधार पर ${
 m d}^4$ आयन का इलेक्ट्रॉनिक विन्यास लिखिए यदि $\Delta_0 < {
 m P}$ है ।
 - (c) एकदंतुर लिगण्ड से क्या अभिप्राय है ? एक उदाहरण दीजिए।

 1×3

 $23. \quad 25 \ ^{\circ}\mathrm{C}$ पर निम्नलिखित सेल का emf परिकलित कीजिए :

$${\rm Sn/Sn^{2+}}$$
 (0.001M) || H⁺ (0.01 M) | H_{2(g)}(1 bar)/Pt_(s)

दिया है :
$$E^{\circ}(Sn^{2+}/Sn) = -0.14 \text{ V}, E^{\circ} H^{+}/H_{2} = 0.00 \text{ V} (\log 10 = 1)$$

3

- 24. निम्नलिखित अभिक्रियाओं के लिए रासायनिक समीकरण लिखिए (कोई तीन कीजिए।):
 - (a) हाइड्रोबोरॉनन ऑक्सीकरण अभिक्रिया
 - (b) विलियम्सन संश्लेषण
 - (c) ऐनिसोल का फ्रीडेल क्राफ्ट्स ऐल्किलन
 - (d) राइमर-टीमन अभिक्रिया

 1×3

56/4/1/21

20. (a) Write the stepwise mechanism of nucleophilic addition reactions in the carbonyl compounds.

2

OR

- (b) How will you convert the following:
 - (i) Toluene to benzoic acid.
 - (ii) Ethanol to 3-Hydroxybutanal

 1×2

- 21. (a) What happens when glucose reacts with bromine water? Write chemical equation.
 - (b) Two bases are mentioned below, identify which is present in DNA and which one is present in RNA:
 - (i) Thymine, (ii) Uracil.

 1×2

SECTION - C

22. (a) Draw the geometrical isomers of the given complex:

 $[Pt(en)_2Cl_2]^{2+}$

- (b) Write the electronic configuration for d^4 ion if $\Delta_0 < P$ on the basis of crystal field theory.
- (c) What is meant by a unidentate ligand? Give an example.

 1×3

23. Calculate emf of the following cell at 25 $^{\circ}$ C:

$${\rm Sn/Sn^{2+}}~(0.001~{\rm M})~||~{\rm H^+}~(0.01~{\rm M})~|~{\rm H_{2(g)}}(1~{\rm bar})~|~{\rm Pt_{(s)}}$$

Given :
$$E^{\circ}(Sn^{2+}/Sn) = -0.14 \text{ V}$$
, $E^{\circ} H^{+}/H_{2} = 0.00 \text{ V}$ (log 10 = 1)

3

- 24. Write chemical equations for the following reactions: (Do any three)
 - (a) Hydroboration oxidation reaction
 - (b) Williamson Synthesis
 - (c) Friedel-Crafts Alkylation of Anisole
 - (d) Reimer-Tiemann Reaction

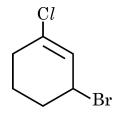
 1×3

56/4/1/21

13

P.T.O.

- $25. \quad (\mathrm{a}) \quad$ निम्नलिखित युगलों के यौगिकों में विभेद करने के लिए रासायनिक परीक्षण दीजिए :
 - (i) फ़ीनॉल और बेन्जोइक अम्ल
 - (ii) प्रोपेनेल और प्रोपेनोन
 - (b) दिए हुए यौगिकों में से कौन प्रबलतर अम्ल है और क्यों ?


CH2FCH2COOH या CH3CHFCH2COOH

2 + 1

- 26. निम्नलिखित पदों की व्याख्या कीजिए:
 - (a) आवश्यक ऐमीनो अम्ल
 - (b) पेप्टाइड बंध
 - (c) विकृतीकरण

 1×3

27. (a) दिए हुए यौगिक का आई यू पी ए सी नाम लिखिए:

- (b) $-NO_2$ समूह की आर्थों या पैरा स्थितियों पर उपस्थिति हैलोऐरीनों की नाभिकरागी प्रतिस्थापन अभिक्रियाओं के प्रति अभिक्रियाशीलता बढ़ा देता है । उपरोक्त कथन की व्याख्या के लिए कारण दीजिए ।
- (c) क्या होता है जब ऐथिल क्लोराइड को एल्कोहॉलिक पोटैशियम हाइड्रॉक्साइड के साथ अभिक्रियित ${\bf 1}\times {\bf 3}$
- 28. दर्शाइए कि प्रथम कोटि की अभिक्रिया में 99.9% अभिक्रिया पूर्ण होने में लगा समय अभिक्रिया की अर्धायु $(t_{1/2})$ का 10 गुना होता है । $[\log 2 = 0.3010, \log 10 = 1]$.

56/4/1/21

14

- 25. (a) Give chemical tests to distinguish between the following pairs of compounds:
 - (i) Phenol and Benzoic acid
 - (ii) Propanal and Propanone
 - (b) Which one of the given compounds is a stronger acid and why?

2 + 1

- 26. Explain the following terms:
 - (a) Essential amino acids
 - (b) Peptide bond
 - (c) Denaturation

 1×3

27. (a) Write the IUPAC name of the given compound:

$$Cl$$
 Br

- (b) The presence of $-\mathrm{NO}_2$ group at ortho or para position increases the reactivity of haloarenes towards nucleophilic substitution reactions. Give reason to explain the above statement.
- (c) What happens when ethyl chloride is treated with alcoholic potassium hydroxide? 1×3
- 28. Show that the time required for 99.9% completion in a first order reaction is 10 times of half-life ($t_{1/2}$) of the reaction [log 2 = 0.3010, log 10 = 1]. **3**

खण्ड – घ

निम्नलिखित प्रश्न केस-आधारित प्रश्न हैं । केस को ध्यानपूर्वक पढ़िए और दिए गए प्रश्नों के उत्तर दीजिए ।

29. उपसहसंयोजन यौगिकों में आबंधन की प्रकृति, संरचना की व्याख्या संयोजकता आबंध सिद्धांत द्वारा कुछ हद तक की जा सकती है । केन्द्रीय धातु परमाणु/आयन उपसहसंयोजन संख्या के बराबर रिक्त कक्षक उपलब्ध कराते हैं । धातु के उपयुक्त परमाण्विक कक्षक (s, p और d) संकरित करके निश्चित ज्यामितियों जैसे वर्ग समतली, चतुष्फलकीय एवं अष्ट-फलकीय आदि के समकक्ष कक्षकों के समुच्चय देते हैं । एक प्रबल सहसंयोजक आबंध तभी बनता है जब कक्षक अधिकतम अतिव्यापन करते हैं । संकरण में सम्मिलित d-कक्षक या तो आंतरिक d-कक्षक यानि (n-1) d अथवा बाह्य d-कक्षक यानि nd हो सकते हैं । इस प्रकार निर्मित संकुल क्रमशः आंतरिक कक्षक संकुल (निम्न प्रचक्रण संकुल) और बाह्य कक्षक संकुल (उच्च प्रचक्रण संकुल) कहलाते हैं । इसके अतिरिक्त संकुलों की प्रकृति अनुचुम्बकीय अथवा प्रतिचुम्बकीय हो सकती है । इस सिद्धांत की किमयाँ हैं कि इसमें अनेकों कल्पनाएँ सिम्मिलित हैं तथा यह संकुल के रंग की व्याख्या नहीं कर पाता है ।

निम्नलिखित प्रश्नों के उत्तर दीजिए:

- (a) प्रागुक्ति कीजिए कि $[{
 m CoF}_6]^{3-}$ प्रतिचुम्बकीय है अथवा अनुचुम्बकीय, और क्यों ? [परमाणु क्रमांक : ${
 m Co}=27$]
- (b) $[\mathrm{Co(en)}_2\ \mathrm{Cl}_2]^+$ में Co की उपसहसंयोजन संख्या क्या है ?
- (c) (i) दिए हुए संकुल का आई यू पी ए सी नाम लिखिए :

 $[Pt(NH_3)_2Cl_2]^{2+}$

(ii) $[{
m Co(NH_3)}_6]^{3+}$ एक आंतरिक कक्षक अथवा बाह्य कक्षक संकुल है, व्याख्या कीजिए । ${f 1+1}$

अथवा

(c) संयोजकता आबंध सिद्धांत के आधार पर $[{
m Ni}({
m NH}_3)_6]^{2+}$ की आकृति तथा संकरण का निगमन कीजिए ।

[परमाणु क्रमांक : Ni = 28] 2

56/4/1/21 16

CLICK HERE >>>

www.studentbro.in

SECTION - D

The following questions are case-based questions. Read the case carefully and answer the questions that follow.

29. The nature of bonding, structure of the coordination compound can be explained to some extent by valence bond theory. The central metal atom/ion makes available a number of vacant orbitals equal to its coordination number. The appropriate atomic orbitals (s, p and d) of the metal hybridise to give a set of equivalent orbitals of definite geometry such as square planar, tetrahedral, octahedral and so on. A strong covalent bond is formed only when the orbitals overlap to the maximum extent. The d-orbitals involved in the hybridisation may be either inner d-orbitals i.e. (n−1) d or outer d-orbitals i.e. nd. The complexes formed are called inner orbital complex (low spin complex) and outer orbital complex (high spin complex) respectively. Further, the complexes can be paramagnetic or diamagnetic in nature. The drawbacks of this theory are that this involves number of assumptions and also does not explain the colour of the complex.

Answer the following questions:

- Predict whether [CoF₆]³— is diamagnetic or paramagnetic and why? (a) [Atomic number : Co = 27]
- What is the coordination number of Co in $[Co(en)_2 Cl_2]^+$? 1 (b)
- (i) Write the IUPAC name of the given complex: (c) $[Pt(NH_3)_2Cl_2]^{2+}$
 - Explain $[Co(NH_3)_6]^{3+}$ is an inner orbital or outer orbital (ii) complex. 1 + 1

OR

Using valence bond theory, deduce the shape and hybridisation of (c) $[Ni(NH_3)_6]^{2+}$ [Atomic number of Ni = 28] 2

56/4/1/21 **17** P.T.O.

गैल्चैनी सेल में, रेडॉक्स अभिक्रिया की रासायनिक ऊर्जा, विद्युत ऊर्जा में परिवर्तित होती है, जबकि वैद्युतअपघटनी सेल में विद्युत धारा प्रवाहित करने पर रेडॉक्स अभिक्रिया होती है। सरलतम गैल्चैनी सेल में ${
m Zn}$ छड़ को ${
m ZnSO_4}$ विलयन में रखा जाता है और ${
m Cu}$ छड़ को ${
m CuSO_4}$ विलयन में रखा जाता है । दोनों छडों को वोल्टमीटर के माध्यम से धात्विक तार द्वारा जोडा जाता है। दोनों विलयनों को लवण सेत् द्वारा जोड़ा जाता है। दोनों इलेक्ट्रॉडों के इलेक्ट्रॉड विभवों के अंतर को वैद्युत वाहक बल (emf) कहा जाता है। वैद्युतअपघटन प्रक्रम में विद्युत धारा प्रवाहित करने पर पदार्थ का अपघटन होता है। किसी सेल में से एक मोल विद्युत आवेश प्रवाहित करने पर द्विसंयोजक आयन जैसे Cu^{2+} के आधा मोल विसर्जित होते हैं। सर्वप्रथम वैद्युतअपघटनी नियम के रूप में फैराडे ने इसे सूत्रबद्ध किया था।

निम्नलिखित प्रश्नों के उत्तर दीजिए:

- गैल्वेनी सेल में लवण सेतु का क्या प्रकार्य है ? (a)
- गैल्वेनी सेल कब एक वैद्युतअपघटनी सेल की भाँति व्यवहार करता है ? (b)
- क्या जिंक से बने बर्तन में कॉपर सल्फेट विलयन भंडारित किया जा सकता है ? E° सेल के मान (c) की सहायता से व्याख्या कीजिए।

$$(E^{o} Cu^{2+} / Cu = 0.34 V)$$

$$(E^{o} Zn^{2+} / Zn = -0.76 V)$$

अथवा

- निम्नलिखित के अपचयन के लिए कितने फैराडे आवेश की आवश्यकता होगी ? (c)
 - 1 मोल MnO_{4}^{-} को Mn^{2+} में (i)
 - 1 मोल $\mathrm{H_2O}$ को $\mathrm{O_2}$ में (ii)

खण्ड – ङ

- निम्नलिखित में से किन्हीं पाँच प्रश्नों के उत्तर दीजिए :
 - जिंक को संक्रमण तत्व क्यों नहीं माना जाता है ? (a)
 - लैन्थेनॉयड आकुंचन क्या है ? (b)
 - जिंक की तुलना में क्रोमियम की प्रथम आयनन एन्थेल्पी निम्नतर क्यों होती है ? (c)
 - संक्रमण तत्व क्यों उत्तम उत्प्रेरक होते हैं ? (d)
 - संक्रमण धात्ओं के यौगिक सामान्यतः रंगीन होते हैं। कारण दीजिए। (e)

56/4/1/21

18

1

1

2

2

^^^^

30. In a galvanic cell, chemical energy of a redox reaction is converted into electrical energy, whereas in an electrolytic cell the redox reaction occurs on passing electricity. The simplest galvanic cell is in which Zn rod is placed in a solution of ZnSO₄ and Cu rod is placed in a solution of CuSO₄. The two rods are connected by a metallic wire through a voltmeter. The two solutions are joined by a salt bridge. The difference between the two electrode potentials of the two electrodes is known as electromotive force. In the process of electrolysis, the decomposition of a substance takes place by passing an electric current. One mole of electric charge when passed through a cell will discharge half a mole of a divalent metal ion such as Cu²⁺. This was first formulated by Faraday in the form of laws of electrolysis.

Answer the following questions:

- (a) What is the function of a salt bridge in a galvanic cell?
- (b) When does galvanic cell behave like an electrolytic cell?
- (c) Can copper sulphate solution be stored in a pot made of zinc? Explain with the help of the value of E° cell.

$$(\mathrm{E}^{\circ}~\mathrm{Cu}^{2+}~/~\mathrm{Cu} = 0.34~\mathrm{V})$$

$$(E^{\circ} Zn^{2+} / Zn = -0.76 V)$$

OR

- (c) How much charge in terms of Faraday is required for the following :
 - (i) $1 \text{ mol of MnO}_{4}^{-} \text{ to Mn}^{2+}$
 - (ii) $1 \text{ mol of H}_2\text{O to O}_2$

2

2

SECTION - E

- 31. Attempt any **five** of the following:
 - (a) Why Zinc is not regarded as a transition element?
 - (b) What is Lanthanoid contraction?
 - (c) Why is first ionization enthalpy of chromium lower than that of Zn?
 - (d) Why are transition elements good catalysts?
 - (e) Compounds of transition metals are generally coloured. Give reason.

56/4/1/21 19 P.T.O.

- (f) $KMnO_4$ एवं K_2MnO_4 की तुलना में, कौन सा एक अनुचुम्बकीय है, और क्यों ?
- (g) निम्नलिखित आयनिक समीकरण पूर्ण कीजिए:

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \longrightarrow$$

 1×5

- 32. (a) (i) प्रतिलोम परासरण को परिभाषित कीजिए।
 - (ii) जलीय स्पीशीज़ के लिए गर्म जल की तुलना में ठंडे जल में रहना अधिक आरामदायक क्यों है ?
 - (iii) $303~{\rm K}$ पर $100~{\rm g}$ जल में $2~{\rm g}$ ग्लूकोस (M = $180~{\rm g}~{\rm mol}^{-1}$) को घोलकर विलयन बनाया गया । यदि $303~{\rm K}$ पर शुद्ध जल का वाष्प दाब $32.8~{\rm mm}~{\rm Hg}$ है तो विलयन का वाष्प दाब क्या होगा ? 1+1+3

अथवा

- (b) (i) एथेनॉइक अम्ल को बेन्जीन में घोलने पर प्रागुक्ति कीजिए कि वाण्ट हॉफ गुणक एक से कम होगा या अधिक।
 - (ii) आदर्श विलयन की परिभाषा लिखिए।
 - (iii) ${
 m CaCl}_2$ (मोलर द्रव्यमान = $111~{
 m g~mol}^{-1}$) के उस द्रव्यमान का परिकलन कीजिए जिसे $500~{
 m g}$ जल में विलीन करने पर हिमांक में $2{
 m K}$ की कमी हो जाए, यह मानते हुए कि ${
 m CaCl}_2$ का पूर्ण वियोजन हो गया है । ${
 m 1+1+3}$ (जल के लिए ${
 m K}_{
 m f}=1.86~{
 m K~kg~mol}^{-1}$)
- 33. (a) C_7H_7ON आण्विक सूत्र का कोई एमाइड 'A' हॉफमान ब्रोमामाइड निम्नीकरण अभिक्रिया द्वारा ऐमीन 'B' देता है । 273-278 K पर 'B', नाइट्रस अम्ल के साथ अभिक्रियित करके 'C' और क्लोरोफ़ार्म तथा एथेनॉलिक पोटैशियम हाइड्राक्साइड के साथ अभिक्रियित करके 'D' बनाता है । 'C' एथेनॉल के साथ अभिक्रियित करके 'E' देता है । 'A', 'B', 'C' 'D' और 'E' की पहचान कीजिए तथा रासायनिक समीकरणों के अनुक्रम को लिखिए ।

अथवा

56/4/1/21 20

- (f) Out of KMnO₄ and K₂MnO₄, which one is paramagnetic and why?
- (g) Complete the following ionic equation:

$$Cr_2O_7^{2-} + 14 H^+ + 6e^- \longrightarrow$$

 1×5

- 32. (a) (i) Define reverse osmosis.
 - (ii) Why are aquatic species more comfortable in cold water in comparison to warm water?
 - (iii) A solution containing 2 g of glucose (M = 180 g mol⁻¹) in 100 g of water is prepared at 303 K. If the vapour pressure of pure water at 303 K is 32.8 mm Hg, what would be the vapour pressure of the solution?

OR

- (b) (i) Predict whether Van't Hoff factor will be less or greater than one, when Ethanoic acid is dissolved in benzene.
 - (ii) Define ideal solution.
 - (iii) Calculate the mass of ${\rm CaCl_2}$ (molar mass = 111 g mol⁻¹) to be dissolved in 500 g of water to lower its freezing point by 2K, assuming that ${\rm CaCl_2}$ undergoes complete dissociation. 1 + 1 + 3 (K_f for water = 1.86 K kg mol⁻¹)
- 33. (a) An amide 'A' with molecular formula C₇H₇ON undergoes Hoffmann Bromamide degradation reaction to give amine 'B'. B' on treatment with nitrous acid at 273-278 K form 'C' and on treatment with chloroform and ethanolic potassium hydroxide forms 'D'. 'C' on treatment, with ethanol gives 'E'. Identify 'A', 'B', 'C' 'D' and 'E.' and write the sequence of chemical equations.

5

OR

- (1) हिन्सबर्ग अभिकर्मक क्या है ? (b) (i)
 - निम्नलिखित यौगिकों को गैस प्रावस्था में उनकी बढ़ती हुई क्षारकीय सामर्थ्य में व्यवस्थित कीजिए:

$$\mathrm{C_2H_5NH_2},\,(\mathrm{C_2H_5})_3$$
 N, $(\mathrm{C_2H_5})_2$ NH

- निम्नलिखित के कारण दीजिए: (ii)
 - ऐनिलीन की तुलना में मेथिल ऐमीन अधिक क्षारकीय है। (1)
 - ऐनिलीन, ब्रोमीन जल के साथ शीघ्रता से अभिक्रिया करके 2, 4, 6-ट्राइब्रोमो (2) ऐनिलीन देती है।
 - तृतीयक ऐमीनो की तुलना में प्राथिमक ऐमीनो के क्वथनांक उच्चतर होते हैं। 2 + 3

56/4/1/21

- (b) (i) (1) What is Hinsberg's reagent?
 - (2) Arrange the following compounds in the increasing order of their basic strength in gaseous phase:

$$\mathrm{C_2H_5NH_2},\,(\mathrm{C_2H_5})_3$$
 N, $(\mathrm{C_2H_5})_2$ NH

- (ii) Give reasons for the following:
 - (1) Methyl amine is more basic than aniline.
 - (2) Aniline readily reacts with bromine water to give 2, 4, 6-tribromoaniline.
 - (3) Primary amines have higher boiling points than tertiary amines. **2+3**

56/4/1/21


······

56/4/1/21 **226** A

CLICK HERE

Marking Scheme

Strictly Confidential

(For Internal and Restricted use only)

Senior School Certificate Examination, 2024

SUBJECT NAME CHEMISTRY (Theory)
(Q.P.CODE 56_4_1,2,3)

General Instructions: -

You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.

"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."

Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.

The Marking scheme carries only suggested value points for the answers

These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.

The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.

Evaluators will mark($\sqrt{}$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.

If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.

1 I Page 56 4 1

Get More Learning Materials Here:

If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.

If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "**Extra Question**".

No marks to be deducted for the cumulative effect of an error. It should be penalized only once.

A full scale of marks _____(example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.

Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.

Ensure that you do not make the following common types of errors committed by the Examiner in the past:-

- Leaving answer or part thereof unassessed in an answer book.
- Giving more marks for an answer than assigned to it.
- Wrong totaling of marks awarded on an answer.
- Wrong transfer of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying/not same.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
- Half or a part of answer marked correct and the rest as wrong, but no marks awarded.

While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.

Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.

The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot Evaluation" before starting the actual evaluation.

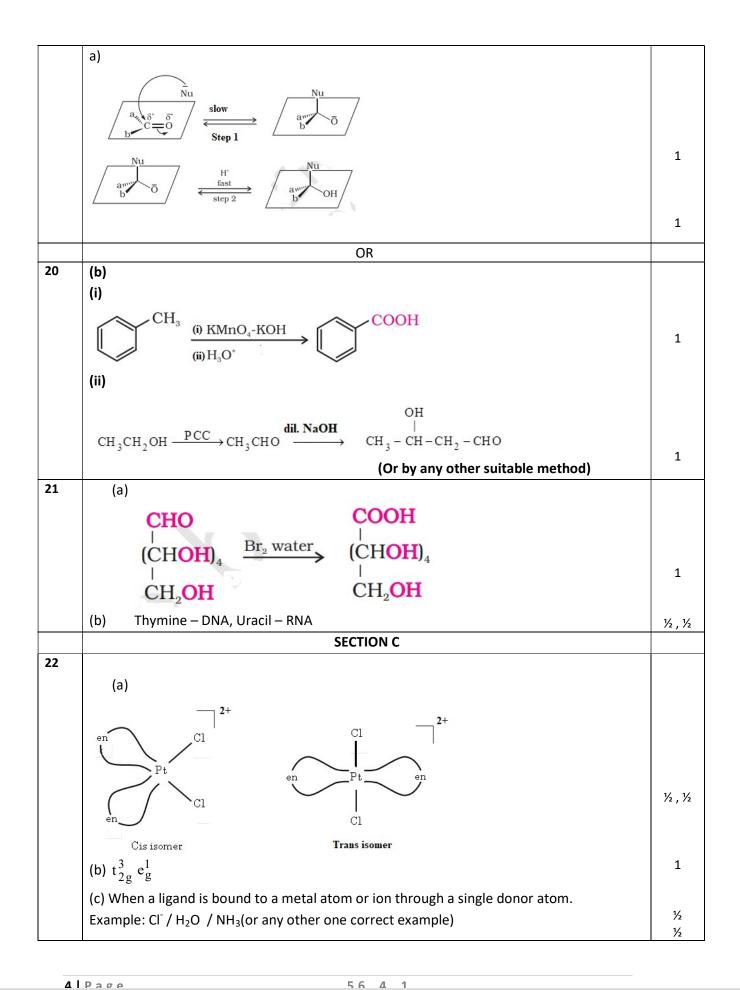
Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.

The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

2 I Page 5.6 4 1

MARKING SCHEME 2023

CHEMISTRY (Theory) - 043 QP CODE 56/4/1


Q.No	Value points	Mark
	SECTION A	
1	(D)	1
2	(A)	1
3	(C)	1
4	(A)	1
5	(A)	1
6	(B)	1
7	(C)	1
8	(A)	1
9	(C)	1
10	(B)	1
11	(A)	1
12	(A)	1
13	(D)	1
14	(A)	1
15	(C)	1
16	(C)	1
	SECTION B	
	(a) The sum of powers of the concentration of the reactants in the rate law expression.	1
17	(b) The energy required to form activated complex / The minimum amount of extra energy	
	required by reactingmolecules to get converted into a product.	1
18	A.TIV m	
	$\Delta T_f = K_f m$	1,
	$M_{B} = \frac{K_{f} \times W_{B} \times 1000}{W_{A} \times \Delta T_{f}}$	1/2
	$\Delta T_f = T_f^0 - T_f$	
	$\Delta T_{f} = 273 \cdot 15 - 272 \cdot 07 = 1 \cdot 08 \text{ K}$	
	$M_{B} = \frac{1.86 \times 18 \times 1000}{200 \times 1.08}$	1
	$= 155 \mathrm{g mol}^{-1}$	1/2
19	 a) CH₃- CH₂- I; lodide is a better leaving group/ due to larger size of iodine. b) Butane < 1 - Chlorobutane < 1- Bromobutane < 1 - Iodobuatane. 	½,½ 1
20		

3 I Page

56 4 1

Get More Learning Materials Here:

23	$E_{cell} = E_{cell}^{o} - \frac{0.059}{2} \log \frac{\left[Sn^{2+}\right]}{\left[H^{+}\right]^{2}}$	1/2
	[H']	
	$E_{\text{cell}}^{0} = 0 - (-0.14 \text{ V}) = 0.14 \text{ V}$	1/2
	$E_{\text{cell}} = 0.14 - \frac{0.059}{2} \log \frac{(0.001)}{(0.01)^2}$	
	- (6 3-)	1
	$= 0.14 - \frac{0.059}{2} \log 10$	
	= 0.14 - 0.0295 = 0.1105 V or 0.11 V	1
	(Deduct ½ marks for incorrect or no unit)	
	(Or by any other suitable method)	
24		
	(a)	
	$CH_3 - CH = CH_2 \xrightarrow{1. B_2H_6} CH_3 - CH_2 - CH_2 - OH$	
	2. H ₂ O ₂ , ŌH	
	(b)	1×3
	$R-X + R' - \overset{-}{0} \overset{+}{Na} \longrightarrow R - \overset{-}{0} - R' + Na X$	
	(or any other correct equation)	
	(c)	
	$ \begin{array}{c c} OCH_3 & OCH_3 \\ +CH_3Cl & Anhyd. AlCl_3 \\ \hline CS_2 & CH_3 \end{array} $	
	(d)	
	OH 1. CHCl ₃ + aq NaOH CHO	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	(Any three)	
25	(a) (i) On adding poutral FoCl, phonel gives violet colouration whereas honzoic acid does not give	1
	(i) On adding neutral FeCl ₃ , phenol gives violet colouration whereasbenzoic acid does not give violet colour.	1
	(ii) On adding Tollens reagent, propanal gives silver mirror whereas propanone does not.	1
	(or any other suitable chemical test). (b) CH ₃ CHF CH ₂ COOH; due to stronger – I effect or electron withdrawing nature of F, as F is closer	1/2,1/2
	to the carboxyl group.	/2,/2
26.	(a) Amino acids that cannot be synthesised in the body and must be obtained through diet.	1
	(b) The amide linkage between – COOH group and -NH ₂ group. / The amide linkage (-CONH-)which	1
	joins two amino acids.	
	(c) When a protein in its native form, is subjected to physical change like change in pH, temperature etc it loses itsbiological activity (Or destruction of secondary and tertiary structure.)	1
I	temperature etc it loses its biological activity (Or destruction of secondary and tertiary structure.)	

5 I P 2 0 P 5 6 4 1

27	 (a) 3 - Bromo- 1 - chlorocyclohexene (b) Nitro group is electron withdrawing group, it withdraws electron density from the benzene 		
	ring and facilitates the attack of nucleophile on haloarene.		
	(c) $CH_3 - CH_2 - Cl + KOH(alc) \longrightarrow CH_2 = CH_2 + KCl + H_2O$ / Ethene is formed.	1	
28.	$k = \frac{2 \cdot 303}{t} \log \frac{[R]_0}{[R]}$	1/2	
	For 99.9 % completion		
	Let $[R]_0 = 100$,		
	[R] = 100 - 99.9 % = 0.1		
	$t_{99.9\%} = \frac{2 \cdot 303}{k} \log \frac{100}{0.1}$	1/2	
	$=\frac{2\cdot303}{k}\log 1000$		
	$=\frac{2\cdot 303}{k}\times 3 \qquad \dots $ (i)	1/2	
	Let $[R]_0 = 100$, $[R] = 100 - 50 = 50$		
	$t_{50\%} = \frac{2 \cdot 303}{k} \log \frac{100}{50}$	1/2	
	$=\frac{2\cdot 303}{k}\log 2$		
	$= \frac{2 \cdot 303}{k} \times 0 \cdot 3010 \qquad \qquad \text{(ii)}$ Divide (i) by (ii)	1/2	
	$\frac{\frac{t_{99.9\%}}{t_{50\%}}}{\frac{t_{50\%}}{t_{50\%}}} = \frac{\frac{2 \cdot 303}{k} \times 3}{\frac{2 \cdot 303}{k} \times 0.3010}$ $\frac{\frac{t_{99.9\%}}{t_{50\%}}}{t_{50\%}} = 10$	1/2	
	or $t_{99.9\%} = 10t_{50\%}$		
	(or by any other suitable method)		
	SECTION D	1	

29.	(a) Paramagnetic, F does not cause pairing of electrons and hence unpaired electrons are left.	1/2 , 1/2
	(b) 6	1
	(c) (i) diamminedichloridoplatinum(IV) ion	1 1
	(ii) It uses inner d orbitals because NH ₃ causes pairing of electrons	1
	OR	_
	c)	
	3d 1s 4n Ad	
	Ni(II)	
	$ \begin{array}{c c} \uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\uparrow\uparrow\uparrow & \uparrow \\ \text{Ni(II) in } \left[\text{Ni(NH}_3)_6\right]^{2^+} \end{array} $	
		1
	sp^3d^2	1
	Shape: Octahedral ; Hybridization : sp ³ d ²	1/2 , 1/2
30	(a) It allows flow of ions and the circuit is completed / itmaintains the electrical neutrality.	1
	(or any other correct reason).	
	(b) When $E_{ext} > E_{cell}$	1
	(c) $E_{cell}^{o} = E_{Cu^{2+}/Cu}^{o} - E_{Zn^{2+}/Zn}^{o}$	1
	= 0.34 - (-0.76) = 1.10 V	1
	As E_{cell}^{o} = +ve, the reaction takes place, so copper sulphate cannot be stored ina zinc pot.	1
	OR	
	(c) (i) 5F	1
	(ii) 2 F	1
	SECTION E	
31	(a) Zn hasfully filled d-orbital configuration in ground state and in its oxidized state.(b) The filling of 4f orbital before 5d orbital results in steady decrease in atomic radii and ionic	
	radii. / The steady decrease in the atomic radii or ionic radii of the elements with increase in atomic number.	
	(c) In chromium an electron is removed from 4s ¹ while in Zn it is from fully filled 4s ² orbital.	
	(d) Due to variable oxidation stateandcomplex formation /provide large surface area.	1 x 5
	(e) Due to d–d transition of electrons in d– orbitals / unpaired electrons in d-orbital.	
	(f) K ₂ MnO ₄ , due to the presence of one unpaired electron.	
	(g) $\operatorname{Cr}_2 \operatorname{O}_7^{2-} + 14 \operatorname{H}^+ + 6 \operatorname{e}^- \longrightarrow 2 \operatorname{Cr}^{3+} + 7 \operatorname{H}_2 \operatorname{O}$ (Any five)	
32.	(a) (i) If a pressure larger than the osmotic pressure is applied to the solution side, resulting in the	1
	movement of solvent particles from solution to solvent.	
	(ii) Solubility of gases in water decreases with rise in temperature. More oxygen will be	1
	available in the cold water.	
	(iii)	1
	$\frac{p_1^0 - p_1}{p_1^0} = \frac{n_2}{n_1}$	1
	p_1 n_1	
	$\frac{p_1^0 - p_1}{p_1^0} = \frac{w_2 \times M_1}{M_2 \times w_1}$	
	1744 VOICE 1941 VOICE	1
	$\frac{32.8 - p_1}{32.8} = \frac{2 \times 18}{180 \times 100}$	-

	32.8- <i>p</i> ₁ = 0.0656	
	p_1 = 32.734 mm Hg (Deduct ½ mark for no unit or incorrect unit)	1
	OR	
32	 (a) (i) i will be less than 1. (ii) Solution which obeys Raoult's law over the entire range of concentration. (iii) i = 3 	1
	$\Delta T_f = i \times K_f \times m$	1
	$\Delta T_f = \frac{i \times K_f \times w_B \times 1000}{M_B \times w_A}$	
	$2 K = \frac{3 \times 1.86 \times w_B \times 1000}{111 \times 500}$	1
	$w_{B} = \frac{2 \times 111 \times 500}{3 \times 1.86 \times 1000}$ = 10, 80 = (Padvet 1/ mark for pa unit or incorrect unit)	1
33	= 19.89 g (Deduct ½ mark for no unit or incorrect unit)	
	CONH ₂ $ \begin{array}{c} NH_2 \\ & \\ Br_2 + NaOH \end{array} $ $ \begin{array}{c} NC \\ CHCl_3 + \\ & \\ KOH \end{array} $ $ \begin{array}{c} NC \\ CHCl_3 + \\ & \\ & \\ N2^+Cl^- \end{array} $ $ \begin{array}{c} NaNO_2, HCl \\ 273 - 278 \text{ K} \\ & \\ & \\ N2^+Cl^- \end{array} $ $ \begin{array}{c} C_2H_5OH \\ C \end{array} $ $ \begin{array}{c} C_2H_5OH \end{array} $ $ \begin{array}{c} C_2H_5OH \\ C \end{array} $ $ \begin{array}{c} C_2H_5OH $ $ C $ $ \begin{array}{c} C_2H_5OH \end{array} $ $ \begin{array}{c} C_2H_5OH $ $ C $ $ \begin{array}{c} C_2H_5OH \end{array} $ $ \begin{array}{c} C_2H_5OH $ $ C $ $ \begin{array}{c} C_2H_5OH \end{array} $ $ \begin{array}{c} C_2H_5OH $ $ C $ $ \begin{array}{c} C_2H_5OH $ $ C $	1 x 5
	D, E).	
	OR OR	
33	(b) (i) (1) Benzene Sulphonyl Chloride (C ₆ H ₅ SO ₂ Cl) (Name or formula)	1
	$(2)C_2H_5NH_2<(C_2H_5)_2NH<(C_2H_5)_3N$	1
	(ii) (1) In methylamine, electron donating effect of – CH ₃ group increases the availability of	4
	lone pair of electrons on nitrogen of the amino group. / In aniline, benzene withdraws electrons due to resonance therefore electron pair is less easily available for protonation.	1
	(2) Due to strong activating effect of amino group.	1
	(3) Due to intermolecular hydrogen bonding in primary amines.	1

8 I Page 56 4 1

